
978-1-4577-0351-5/11/$26.00 c©2011 IEEE

A Verified Wireless Safety Critical Hard Real-Time Design

Herńan Baŕo Graf1, Holger Hermanns1, Juhi Kulshrestha1, Jens Peter1,2, Anjo Vahldiek1, Aravind Vasudevan1,3

1Saarland University – Computer Science, Saarbrücken, Germany
2Saarland University, Department of Mechatronics, Saarbrücken, Germany

3Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract—Wireless communication, hard real time require-
ments and safety criticality do not go together well. This paper
reports on the modelling, design, simulation, implementation
and deployment of a small exemplary case that possesses
all these features. State-of-the-art verification and simulation
means are employed to ensure its proper operation.

Keywords-wireless control, safety criticality, dependability,
modelling and validation

I. I NTRODUCTION

Classical abstractions used in software engineering leave
out “nonfunctional” aspects, such as cost, efficiency and
robustness. In particular in the field of embedded software,
there is a growing awareness that these abstractions no
longer suffice to arrive at dependable designs [8], [12].
Embedded software is subject to complex and permanent
interactions with its, mostly physical, environment via sen-
sors and actuators. Wireless sensor and actuator networks
such as WirelessHART [4] are setting new standards in this
domain. Regardless if wireless or wired, the possibilitiesof
user intervention with such systems are usually very limited
and high requirements are therefore put on performance and
dependability as the embedded nature complicates tuning
and maintenance.

At the same time, embedded software permeates safety
and mission critical applications in a spectrum ranging
from pace makers to chemical plant control. The future
will likely bring an increase in wireless technology also in
the context of safety-critical control applications. Wireless
communication is known to be inherently unreliable and
often is characterised by relatively high message loss rates.
When hard real time requirements are to be met despite
wireless communication, it becomes even more difficult to
come up with safety guarantees. The central problem is
that consecutive failures in message transfer may affect the
correct functioning.

There are two specific application conditions under which
this problem may be overcome: First, it is possible – if
the application allows it – to run the control loop on a
pace that is slow enough such that the probability of a
prohibitive number of consecutive message losses is clearly
negligible. Second, if the systems allows for a fail-safe state,
it is possible to force the design into that state whenever
the number of consecutive losses exceeds some justifiable

bound. If not well configured, this may lead to a system
that is barely operational, but it is a safe design after all.

But what to do if neither of the two conditions are met?
If there is no fail-safe state and if the controller must react
within a very limited time window? A responsible designer
will likely react very reluctantly to the idea of solving with
wireless technology a control problem that is hard real-time,
safety-critical and does not offer a fail-safe state to fallback
to.

In this paper we are looking at a very tiny control problem
of precisely that sort. It is safety-critical, has hard real-
time requirements and does not have an obvious fail-safe
state. We are looking at the brakes of an ordinary bicycle
and are investigating what happens when the mechanical
connection is replaced by a wireless sensor and actuator pair.
We report here about the modelling, verification, design and
construction of such awireless bike brake.

This project was originally conceived as themad bike
project, and there is some craziness in this idea after all.
However we think that it is a very good case to study
the principal possibilities and limitations of wireless control
without going to excessive infrastructure costs. Indeed, our
investigations allow us to discriminate between different
options to solve this and similar problems with different
dependability guarantees.

The dependability guarantees we can give are quantitative
– or probabilistic – guarantees. We guarantee that the
probability of the system to not react within a safe time
window is low, where the precise number depends on the
assumptions made about timing and individual message loss
probabilities. We measure these individual loss probabilities
on the real design and use these measurements as input to
our model-based analysis. In fact, we consider both a setup
with message loss probabilities in the order of10−5 as well
as a more challenging scenario with losses occurring for
more than 50% of the messages sent.

For the purpose of studying quantitative dependability, we
resort to a modelling formalism that supports the specifica-
tion of real-time as well as probabilities. The principal ingre-
dients of the application are modelled as probabilistic timed
automata (PTA), specified in the language Modest [1]. These
specifications are submitted to an analysis engine,mcpta, a
PTA model checker developed for Modest [2], [10]. This
model checker enables us to arrive at the above guarantees.

It can also derive average response time bounds and other
measures. It does so by using the PRISM model checker [6]
as a back end, encoding time as a variable automatically. The
use of probabilistic timed automata model checking is very
natural for such a concrete scenario with message losses and
hard real-time requirements. However, this is likely the first
concrete use case of this kind, mainly because PTA model
checkers debuted only very recently [2], [7], [13] and only
the Modest checker seems to be stable and available for
download [10], providing high level modelling features as
well as convenient programming constructs (such as arrays
and global and local variable scoping). The Modest tool
set also includes a simulation enginemodes, which we use
for validation purposes, namely to link between verification
results and empirical measurements.

II. A W IRELESSBIKE BRAKE

This section discusses the principal aspects of a wireless
bike brake, as an example of a safety critical wireless
sensor network system that, despite making use of wireless
communication, has hard real time requirements.

A. Problem Statement

We consider a bike brake, where the communication
between the brake handle and the brake shoe is wireless. The
wireless design has led us to use a number of components,
the force sensor, sender, replicator(s), receiver, actuator and
the alarm system. For a more detailed description of these
components, see section II-B.

The bike brake system has very strict real time timing
requirements. The time between the rider applying the brake
by pressing the handle to the braking force actually being
applied, has to be short enough to ensure the safety of the
rider. The time for applying the brake includes the time for
the force sensor to notice the difference in the force being
applied, conveying it to the sender, the sender transmitting
these values wirelessly to the receiver and its informing the
actuator to apply the braking force. The timings of all these
steps in the braking process are also limited by the hardware
being used.

A regular bike-rider may ride at 30 km/h, i.e. 8 m/s. We
have decided that the communication between handle and
shoe cannot exceed 150 milliseconds(ms), based on the fact
that the actuator mechanics takes 100 ms to react and that
adding both intervals leads to 250 ms, which is equivalent
to 2 meters (to react). In the bike experiment we configure
an alarm system that continuously monitors the connection
and alerts the rider whenever this bound is trespassed.

B. Principal Design

Replacing only the connecting wire between the brake
handle and the brake shoe with a wireless connection does
not result in a wireless electric brake. We identified the
following basic components and their functionalities.

Force Sensor:This sensor is an apparatus which re-
places the brake handle and produces a digital or analog
signal representing the pulled force.

Sender:The sender is located near to the Force Sensor
and has a wired connection to it. It reads the signal and
sends it using a wireless connection to the Receiver.

Receiver: This component receives values from the
Sender and modulates a control signal for the Actuator to a
wire.

Actuator: In general this component produces the brake
force based on the control signal of the Receiver.

Alarm System:If any problem occurs, the Alarm Sys-
tem has to notify the rider that the brake is not working in
this moment.

Replicator(s): To increase reliability we study the op-
tion to introduce a (network of) node(s) for redundancy.
A Replicator component acts as a Sender and a Receiver
combined, it listens to the Sender (or all Replicators) and
echoes the last value obtained to the Receiver (or to all
Replicators). A scenario with 4 replicators is depicted below.

Section IV-D provides a deeper discussion of the actual
components used.

FIGURE 1
THE WIRELESSBRAKE MODEL WITH 4 REPLICATORS

C. Connection Implementation

At the core of the problem is the design of the wireless
connection between sender and receiver. As in many other
hard real time applications, a TDMA-based communication
is a good choice to assure time predictable message delivery.
In fact, we are using the MyriaNed wireless nodes as
basic components [9], a product manufactured by the Dutch
company Chess. These nodes include a micro-controller
(Atmel atxmega128A1) and a radio transceiver (Nordic
Semiconductor nRF24L01+). The micro-controller features
an integrated analog to digital converter which we use to

read a simple force sensor. The radio transceiver operates
in the free 2.4 GHz ISM band, so it can be used without
a license. The nodes communicate via the Chess gMAC
protocol, a proprietary variation of TDMA which is easily
configurable. The principles behind the gMAC protocol have
already been subject to substantial verification efforts using
timed automata [3], [11].

The basic setup consists of a total of two nodes, one
acting as receiver and one as sender. After initialisation,they
communicate via the gMAC protocol, which in this case
is essentially a round-based TDMA protocol. A frame is a
collection of TDMA slots and frame time is the time spent
per frame, thus the sum of the times spent on each TDMA
slot. Each communication frame lasts somen ms and each
component sends one message to the other component per
frame. Throughout the paper, the words frame and round are
used interchangeably.

It is possible to either fix the assignment of compo-
nents to slots in a static way, or to resort a dynamic slot
allocation (DSA), which basically corresponds to running
slotted ALOHA. From a reliability perspective, the fixed
slot assignment (FSA) is clearly superior, since it eliminates
contention on slots. We however decided – perfectly in the
spirit of the mad bike project – to let the MyriaNed nodes
run in their default DSA configuration. This made us face
slot contention (and hence loss probabilities) in the orderof
50 %, thereby serving as a natural emulation of a very noisy
environment. The remainder of the discussion in this paper
is in reference to this setup, except for Section V where we
harden the design by switching to the FSA setting.

The minimum setup we consider has 2 slots (for sender
and receiver) and we will later explain how redundancy
can be achieved by adding further nodes (replicators). Sec-
tion IV-B covers a discussion about a safe and minimal
reaction time and our experimental studies.

III. V ERIFICATION AND SIMULATION

We use state-of-the-art model checking techniques based
on probabilistic timed automata to understand the principles
and limits of the above design, and to get insight into
variations of the solution. For these purposes we built a
model of the nodes in a formal language that supports
concurrency and probabilities. In this section we introduce
the formalism, sketch the model and then report on model
checking and simulation results, for crucial properties ofthe
design that relate hard real time properties and probabilities.

A. Model Formalism: Modest

Modest is a high-level modelling and description language
for stochastic timed systems. It supports a compositional
modelling approach, providing all common operators such as
nondeterministic choice or parallel composition to combine
small models into larger and more complex ones. It com-
bines concepts known from modern programming languages

(e.g. exceptions and exception handling) and verification-
oriented modelling languages like Promela and LOTOS,
and extends these with probabilistic branching, continuous
probability distributions and time. One of Modest’s design
goals is orthogonality [1]: almost all concepts, such as
probabilistic branching, time, or continuous distributions,
do not depend on each other, so features can be removed
to obtain a language describing a submodel of stochastic
timed systems. In the context of this paper, we restrict to
the probabilistic timed automata fragment of Modest [2].

Language features:We introduce the principal nota-
tions needed to understand the models. The basic con-
stituents are processes, that may run in parallel, can possess
and manipulate local variables, may share global variables,
and may emit or synchronise on user-definable actions such
assend, receive, reset, The basic constructs are:
:: is a process delimiter expressing options. In par-

ticular, it can be weighted with probabilities, for
example: “: wi :” for the palt construct appearing
later.

; is a sequential composition operator for processes.
“ P ; Q ” executes P until it terminates and then
it continues with the execution of Q.

{= asgn
1
. . . asgnk =}

is a variable update (atomic assignment), usually
occurring after some action.

alt { ::P1 · · · ::Pk}
is the usual alternative composition. In case
several alternatives areenabled (e.g. from
P1 . . .Pk), one of these alternatives is chosen
non-deterministically (e.g.Pi).

do { ::P1 · · · ::Pk}
repeatedly chooses an alternativePi in the same
nondeterministic manner asalt. It terminates
whenever one of the running processesPi executes
a break action.

when(b)[urgent(c)] P
is a guarded command, whereb is a boolean
expression over variables and clocks, called guard.
The execution ofP is blocked unless or until
the boolean guardb becomestrue, which may
happen because of time advance or because of
a change in a shared variable referred to in the
guard. The optionalurgent(c) modifier enforces
the enabled actions ofP to be happen without
further delay whenever the boolean expressionc
holds. It imposes an extra urgency constraint tob.
If b andc are identical then we can simply declare
when urgent(b).

Clocks are special variables that change their values linearly
with real time, like in timed automata. They are available as
a data typeclock.

Properties in Modest:In order to analyse a Modest
model, a set of properties to be evaluated has to be defined.

In Modest, this is done via a property declaration using
Modest’s Unified Property Language. This is a variation
of well-known temporal logics such as PCTL, TCTL and
CSRL, and also allows to refer to accumulation of rewards
or bonuses.

B. The Wireless Brake Model

The model is based on the assumptions that synchronicity
is attained by the gMAC protocol, which is already im-
plemented in the nodes. In the model described here, the
probability that an individual message does not arrive at the
receiver side is a constantp for each individual message
transmitted. The message size is fixed and one message is
enough to send the information needed at any time.

For the first basic model we consider two logical com-
ponents following the principal design in II-B: Sender and
Receiver. The basic unit in Modest is a process, so the over-
all specification consists of two processes running in parallel,
sender and receiver . For the sake of better readability, the
presented code is slightly different, and simplified, from the
one actually used in the verification.

The sender is parametrised with a slot number, SLOT-
SENDER, that is unique. The decision adopted for synchro-
nising is based on slots so thereceiver also gets thesender ’s
slot number as a parameter. This enables thereceiver to
listen to thesender .

The processes have two main actions, communicate and
reset in every frame. Thesender sends the data through
a wireless channel abstracted by a shared variabledata s
indexed by the slot number (for example SLOTSENDER).
The receiver is listening and has a probabilityp of los-
ing the message transmitted, here specified in percent.

sender(int SLOTSENDER) {
clock timer = 0;
bool brake = true; //local value to be send
do{
:: when urgent(timer>=SLOTSENDER)

send {= data_s[SLOTSENDER]=brake =}
:: when urgent(timer>=ENDFRAME)

new_frame {= timer=0 =}
}

}

At the end of every frame, ENDFRAME, the timers
are reset and thereceiver updates the counterlost, that
keeps the number of consecutive message losses accord-
ing to what happened in the frame. In case this counter
reaches a established maximum MAXLOST, a flag is
raised. This happens immediately, assured by anurgent
action crash. In the other case, nothing happens (ab-
stracting from the true operational behaviour) but re-
setting the clock. This is modelled via atau action,
which stands for some action invisible to the outside.
To avoid unnecessary delays, we let the model progress

as early as possible, and therefore frame the guarded
decisions with urgency constrains, i.e.when urgent.

receiver(int SLOTSENDER) {
clock timer = 0;
bool msg = false; //local stored value
int lost = 0; //number of messages lost
do{
:: when urgent(timer>SLOTSENDER)

palt {
:100-p: {= msg=data_s[SLOTSENDER] =}
: p: {= msg=false =}
}

:: when urgent(timer>=ENDFRAME)
alt{
:: when(msg==false) inc {= lost++ =}
:: when(msg==true) reset {= lost=0 =}
};
alt{
:: when(lost>=MAXLOST) crash {=timer=0=}
:: when(lost<MAXLOST) tau {=timer=0=}

}
}

}

In this process we can see that there is a probabilistic
choice,palt, representing the possibility of losing the mes-
sage with probabilityp (in percent). The nondeterministic
choice alt allows any of the following enabled actions to
be fired. In thereceiver the disjoint guards on the actions
ensure only one action to be enabled at a time.

C. Introducing the Replicators Wireless Network

Adding redundancy into a system is a classical concept
to improve the overall reliability. To experiment with this
idea of a replicator network discussed above, we introduce
a genericreplicator node, that acts as areceiver and a
sender at the same time. At a glance it is obvious that any
type of redundancy will improve the results, but it should be
considered that adding a node induces more communication,
which in a TDMA setting is naturally accommodated by
extending the number of slots per frame accordingly. This
means that the more nodes we introduce as senders the
longer the frames become. If we want comparable results
and we know that we need a reaction within 150 ms we
must keep a fixed number of slots. For practical reasons we
established 12 slots in 150 ms and we divide the frames
accordingly to the number of transmitting nodes.

To study the effect of replication, we add in parallel a
set of nodes asreplicators, extending the model with 1,
2 and 4replicators. The change to the model is minimal.
The behaviour of thereplicator modelled here is simple
(and simplified for the sake of presentation). It basically
listens to thesender during the slot SLOTSENDER and
with probability p it may not hear the message. Then at
SLOTREPLICATOR it replicates the value last received and,
again, with a certain probabilityp the receiver may hear it.

We show areplicator module in a “1-replicator” set-
ting. We also add an action to listen (with probability
p) messages from thereplicator without loosing the in-
formation already received from thesender , thus we use
an OR operator. The other actions remain unchanged.

replicator(int SLOTSENDER, int SLOTREPLICATOR) {
clock timer = 0;
bool msg = false; //local stored value
do{
:: when urgent(timer>SLOTSENDER)

palt {
:100-p: {= msg=data_s[SLOTSENDER] =}
: p: {= msg=false =}
}

:: when urgent(timer>=SLOTREPLICATOR)
replicate {= data_s[SLOTREPLICATOR]=msg =}

:: when urgent(timer>=ENDFRAME)
reset {= timer=0 =}

}
}

receiver(int SLOTSENDER, int SLOTREPLICATOR) {
...
:: when urgent(timer>SLOTREPLICATOR)

palt {
:100-p:{= msg=(msg OR data_s[SLOTREPLICATOR])=}
: p:tau

}
:: when urgent(timer>SLOTSENDER)

...
}

For 2 and 4replicators we did similar changes in the
receiver but now we also need to pass all the slots to the
replicators and receiver to enable them to listen to other
replicators. Since we are interested in not loosing more
than MAXLOST messages in a row, every receiving node
keeps the difference between the frame where it last received
message and the actual frame. When this difference in the
receiver reaches MAXLOST an alarm is fired.

D. Model Checking

We build our model using the Modest checker tool, which
allows us to model-check various properties of interest. Until
further notice, we assume the TDMA frame to contain 2
slots and set its length ton = 25 ms (i.e. the slot’s length is
12.5 ms). The parallel composition of the nodes results in a
system running on a global time line.

Requirements:there are a couple of requirements that
relate probabilities and time in these case studies. We focus
on a crucial one now and another later for simulation and
experiments. As discussed above, the safety of the rider
requires that thereceiver (at the brake shoe) must receive a
command from thesender within a limited time interval oft
ms. We assume thatt is a multiple of the lengthn (in ms) of
a communication frame. We can obviously fitt

n
frames into

the interval of lengtht. The model is set up in such a way
that acrash action is triggered immediately if the count of

consecutive message losses exceeds or equals MAXLOST.
Thus, if MAXLOST= t

n
, the risk of not receiving any

message withint ms corresponds to eventually crashing in
an interval of lengtht. This requirement is expressed by the
following property:

property PMAX_crash = Pmax(<> crash && time <= t)

The temporal operatoreventually, represented by<> a,
usually denoted⋄ a, states that at some point during the
execution the eventa will have happened. This property
asks for the maximum probability of such a behaviour
(Pmax). Since PTA are in general non-deterministic, the
maximum quantification isolates the highest probability over
all resolutions of non-determinism.

We here report on a series of verification runs for the
above requirement that are summarised in the table below.
In this setup, we run the model checker for different time
constraintst: 150 ms, 1 s and 10 s. We configure the model
using 0, 1, 2 and 4 replicators,Rep, to compare reliability
(thus in 150 ms we have 6, 4, 3 and 2 frames respectively).
We also need to vary the corresponding maximum consecu-
tive losses (in frames), i.e. MAXLOST= 6, 4, 3 or 2. From
the experiments we adjust the probability of a single message
lost p to 51%, which corresponds to the average obtained
from the experiment logs, for the chosen setup (DSA). The
results were produced within 1 to 5 minutes, depending on
t, in a dual-core notebook with 3 GB of RAM.

Rep\t 150 ms 1 sec 10 sec

0 0.0175963 0.2796740 0.9732774
1 0.0221659 0.3091858 0.9844734
2 0.0304205 0.3709793 0.9935737
4 0.0639192 0.5259302 0.9996357

TABLE I
MAXIMUM PROBABILITIES OF CRASHING WITHIN t

From table I we can easily deduce that the probabilities of
having a failure increase with the time interval (approaching
1 in the infinite). It was unexpected that when having 4 repli-
cators, also replicating to each other, the crashing probability
is higher than with 1 replicator (or no replicator). This is
a result of the fact that, despite the redundancy provided
by the replicators, the slot added for each replicator node
introduces anexpensivedelay in the communication, thus the
probability of crashing withint, for a fixedt, increases. For
instance within150ms the “basic” model is better than the
“4-replicators” model by a factor of3.6. Nevertheless, when
increasing the time interval, and probabilities got closerto
1, this factor is significantly reduced.

The problem here is that with adding nodes the number
of frames available in the time windowt goes down and
MAXLOST goes down accordingly. This is not compensated
by the additional redundancy.

So, as we will confirm later with the simulation and ex-
periments, short fast frames from sender to receiver behave

better than longer frames with replicating nodes in between.
But, there is also another aspect out of the scope of this
paper that takes into consideration the battery life of the
nodes and also the costs of the extra nodes This means that
in short frames there are no slots for idle time whereas in
longer frames the sending nodes have more idle slots. Idle
times are known to increase (often significantly) battery life
and efficiency. On the other hand, having replicators implies
having more nodes and the system becomes more expensive.
Possibly, future bikes will anyway be equipped with a
network of wireless nodes for other reason (for gear shifting,
rider monitoring for instance) with better performance and
the use of this network as replicators for the brakes could
become beneficial.

E. Simulation

The Modest tool set also comprises a discrete event simu-
lator, modes. Simulation allowed us to get numbers as aver-
age and interval analysis. We therefore employed simulation
as a link between model checking and experiments. First we
statistically derive the maximum probability of crashing,as
we did via the model checker, for a number or scenarios,
now via simulation. For the 0, 1 and 2 replicators model,
we established a number of simulation runs of 10.000, to
not take long and provide good confidence intervals.

Rep\t 150 ms 1 sec 10 sec

0 0.01550 0.27220 0.97640
1 0.02230 0.30470 0.98180
2 0.03250 0.36540 0.99350
4 0.06339 0.52470 0.99976

TABLE II
SIMULATED MAXIMUM PROBABILITIES OF CRASHING WITHIN t

Table II exhibits a good approximation of the actual
results obtained in model checking. We use the simulation
technology for further experiments, also to compare with the
empirical results (reported on later). For this, we simulate
the system and count how many crashes can occur within a
given time interval. Themodesengine allows us to introduce
a watch expression over a counter and check for the number
of crashes at a certain time point. It then calculates the
resulting average over all simulation runs. The property we
desire is expressed as:

property AVG_crash = Xmax(num_crashes | time == t);

For the “4 replicators” model we run 100.000 simulations
usingmodes, taking 6 hours to complete, with the following
results where:

S.D.: stands for Standard Deviation
L.C.L.: stands for Lower Confidence Limit
U.C.L.: stands for Upper Confidence Limit

Comparing the model checking for the “4-replicators”
model and its corresponding simulation, as can be seen in
last row of table I and the first and second columns of table

Property Result S.D. L.C.L. U.C.L.

PMAX 150ms 0.06339 0.243664 0.061427 0.065388
PMAX 1s 0.52470 0.499392 0.520641 0.528757
PMAX 10s 0.99976 0.015490 0.999609 0.999871
AVG 1s 0.76572 0.896036 0.758438 0.773002
AVG 10s 8.42719 2.988175 8.402905 8.451475

TABLE III
RESULTS FROM THE“4 REPLICATORS” MODEL

III, we can conclude that the model checking results were
precise (and faster) and that is expected that the simulation
is also providing valid results for the experiment.

The attentive reader may ask why there are no average
values for 150 ms, it is simply because it is very close to
0. The cases where a crash happened within 150 ms were
far less than the cases with 0 crashes. This is an expected
detail if we notice that the probability of a crash in 150 ms
is around 6% in the worst case and that the average crash
in a second (1 sec≃ 6.6 times 150 ms) is less than 1.

It is also worth noting that the average for 10 seconds is
more than 10 times the average of 1 second. Why is this the
case? Well, the simulator runs up to a certain stop point (1
sec or 10 sec) and starts the counter from 0 in the next run,
so for 10 seconds there is a possibility of counting crashes
involving two intervals of 1 second, where for 1 second
intervals this crash is not seen (analogously between 150
ms and 1 sec).

This last point is important to remember, since it will
become one of the differences between the simulation results
and the experiments result. The experiments run for a long
time collecting data in the logs, while the simulation has
several runs over the same time interval, so inter-interval
crashes, meaning that in the case thelost counter starts
counting in one interval and finishes in the next interval
in the experiments are missed in the simulation since it is
reset in every interval.

IV. REAL CHECKING

Aside from the abstract modelling and verification tasks,
the wireless bike project also involved building the concrete
embedded control software running on the MyriaNed node,
as well as constructing a prototype of the bike. To bring
the concepts of the software design across, we discuss some
of its aspects below, concentrating on the ideal case where
communication is non-faulty.

A. Initialisation and Calibration

Initially the Sender normalises the signal of the Force Sen-
sor to the range between 0 and 100. In each communication
round the Sender reads the signal of the Force Sensor and
normalises it. The Receiver reads the normalised value from
the received message and adjusts the phase modulation for
the Actuator accordingly. Instead of modulating the voltage,
it does so in a digital way: each millisecond an interrupt
calls a function which sets the signal to ON or OFF, and the

percentage of ON signals over a period of 100 ms is always
kept according to the most recent normalised value.

An alarm system is put in place that is triggered by the
Receiver (in the form of a red LED on the bike handle).
In each round, the Receiver sends a heartbeat including the
number of continuous frames where it has not receive any
message, i.e. the number of consecutive frames without any
communication from Sender. Based on these messages or
their losses the status of the alarm LED is updated.

B. Experimental Validation

Multiple tests were conducted on the real nodes to deter-
mine the safe minimum frame time. These tests were made
with no other MyriaNed nodes running in the vicinity, but
there could have been other sources of electronic distur-
bances (e.g., mobile devices, microwave, copy machine).
The tests were not made in an isolated environment on
purpose to emulate real life situations.

FIGURE 2
MESSAGE LOSS RATE FOR25 MS FRAME TIME (108 MINUTES, 270,000

MESSAGES)

Minimum frame time:The run configuration for the
base case of the experiments is as follows. Two MyriaCore
nodes are used with DSA and 2 TDM slots per frame, and
a payload of 32 bytes. To reduce interference at low frame
times due to interrupts, I/O (to record the messages received
and sent) is performed only once every ten frames, and the
size of the I/O is only 10 bits. The approximate distance
between the nodes is 1 meter. Since the objective is to
check the more appropriate frame time, tests are conducted
on different frame times.

Owing to the gMac protocol implementation and con-
straints posed by the hardware, we consider 12.5 ms for a
slot to be safe. Because of this, a 25 ms frame time was used
for a two node setup. As discussed, the DSA scheme gives
rise to an average loss probability of 51%. Figure 2 shows
that the message losses stay reasonably uniform within the
guard boundaries of 0.4 and 0.7 (93 % of all message losses
rates calculated), and this appears suitable as there are only
rare outliers and inconsistencies (2.5% below, 3.5% above).
In the worst case (82.5 % loss rate), which occurred only

twice, still 7 messages are received within one second. This
study seems to reflect the randomness in the DSA slotted
ALOHA well.

Replicator Network:To verify the modelled and sim-
ulated results, we implemented a protocol in which the
communication between a single sender and receiver is
enhanced by a network of replicators. Table IV depicts the
results. For this experiment the time to crash is fixed to
150 ms as reasoned before. The entire network is sending
12 messages within this time (slots). Each setup was tried
in a different arrangement. Each experiment runs for 9:30
min of which only the last 9 min where used, due to start
up abnormalities. The observed message loss rates of the
individual nodes are similar to the previous discussed ones.

In this setup less replicators reduce the number of crashes
due to the higher update rate of the sender. After detecting
the crash, we observe the additional number of continuously
lost frames aslength of crash. We use these values to
calculate the average length (of a crash). In this sense,
the replicator network pays off a little bit more than no
replicator. Increasing the number of replicators has the
tendency to increase the average length of crashes due to
the longer frames up to a point where high redundancy
(several replicators) helps getting a good new message to
the receiver, i.e. faster recovery. When we look at the
message loss rate from the sender to the receiver, adding
more replicators decreases the message loss rate by up to
25% in our experiments, although some messages may be
too old. If we compare the distinctly received messages at
the receiver from the sender the best results are achieved
without any replicator, and this is consistent with the model
checking section.

C. Experiments vs Simulation

At a first glance we see some discrepancies between the
numbers obtained by the experiments and the simulations.
Nevertheless we may have some pointers to address this. In
the first place, as we explained in the simulation section
III-E, there is a difference between counting crashes per
interval (as done in simulation) and counting crashes for
the whole experiment and then averaging those numbers. To
shed some light on this, we look at the “4 replicators” model
(and experiments 8 and 9) and depicted a small case with
counter resets at the beginning of each interval. We checked
the property “Average crashes within 10 second” and then
compare it with simulation results in this table V.

Type Avg. # of crashes in 10 sec

Simulations 8.42719
Experiment 8 12.6296296
Experiment 9 17.5925926

TABLE V
SIMULATION VS . EXPERIMENTS

Values are not similar (although closer), but that is ex-

Experiment # # of Replicators Frame time (in ms) # of crashes Avg. # of crashes in 1 s Avg. length of crash(ms)

1 0 25 169 0.31 22.93
2 0 25 183 0.34 22.40
3 1 37.5 453 0.84 44.62
4 1 37.5 582 1.08 52.19
5 1 37.5 365 0.68 33.39
6 2 50 778 1.44 49.81
7 2 50 407 0.75 30.22
8 4 75 805 1.49 27.02
9 4 75 1104 2.04 19.70

TABLE IV
CRASH EXPERIMENTS

pected. It is important, though, that the order of magnitudeis
the same. And considering the standard deviation (2.988175)
in the simulation, the 95% of the samples occurred in
the interval 8.42719 + / − 3 ∗ 2.988175, this shows that
Experiments 8 and9 are within the interval.

Experiment 9 is a little bit further away, but this leads us
to our second point. Changes in the relative position of the
nodes between each other changed the results considerably.
So even with the same code and same nodes, difference in
the position of the nodes lead to considerable changes (60%).

D. Prototype Deployment

We here report on the features of a first wireless bike
brake prototype built by our team. It has several innovative
experimental features. As described above in the basic
model (and more effective), the MyriaNed nodes establish a
wireless communication between Sender and Receiver, and
this is used to transfer heartbeat signals from Receiver to
Sender: When the number of consecutive losses exceeds
the allowed threshold, a red LED is activated at the alarm
subsystem. Furthermore, instead of placing a force sensor
inside the brake handle, we use an ordinary bike bell as
the interface to the rider: For this purpose, we place a
sensor (potentiometer) measuring the rotation of the bike
bell. The Sender reads the measured value, normalises it
and sends it to the Receiver which modulates the control
signal for the Actuator. The Actuator is an electric drive
engine (operating in 4,5-15V, 540 ER) mounted close to
the brake shoe. It pulls and releases the brake shoe via a
mechanical connection. Additionally, an external stationary
battery supports the engine. We developed the mounting
construction and an electronic board.

In practise the best case reaction time of this wireless
electric brake is about 125 ms. The engine, sampling and
A/D converters require a maximum of 100 ms altogether
to adjust to the current control signal and the wireless
communication consumes the remaining 25 ms. With a
message loss probability of about 51% (which is an average
according to our experiments), we can deduce from the first
table that the reaction time of the brake will exceed the pre-
specified upper bound of 250 ms (150 ms for the wireless
connection) with a probability of almost 2%. As seen in table
I where the probability of crashing in 10 seconds is 97.33%.

Notably, these results are based on the DSA scheme, we
consider the FSA scheme in the next Section.

V. THE HARDENED DESIGN

In the case of the FSA scheme, which does avoid any
randomness in slot assignment, long-term measurements
show a very stable behaviour with an individual message
loss probability estimate in the order of about10−5, more
preciselyp = 0.003%. This estimate is easy to obtain from
a set of long lasting observations of a MyriaNed connection
properly set up. However, the tininess of this estimate makes
it impractical to study the entire braking behaviour (in
reality or in simulation) in a reasonably small amount of
experiments or simulation runs, because a message loss is
now a very rare event. One might think of counteracting
this with rare event simulation technology [5]. Instead we
exploit the convenience of the model checking engine that
we have in place, and readily arrive at the results displayed
in table VI.

Rep\t 150 ms 1 sec 10 sec

0 7.29000 E-28 2.55143 E-26 2.87946 E-25
1 8.74780 E-32 2.01199 E-30 2.30067 E-29
2 1.09349 E-31 1.96829 E-30 2.16512 E-29
4 3.64498 E-27 4.37397 E-26 4.81137 E-25

TABLE VI
CALCULATED MAXIMUM PROBABILITIES OF CRASHING WITHIN t IF

USING FIXED SLOT ASSIGNMENT

As we can see, the overall design becomes highly reliable
if based on the FSA setting. Indeed the model checker
reveals that the probability of crashing within 10 seconds is
below 10−24. The idea of a replicator network is shown to
be clearly counterproductive. In a nutshell, using FSA the
mad bike brake project indeed delivers a verified wireless
safety critical hard real-time system.

Aside from the wireless communication aspect, the cur-
rent prototype is however still a very rough design. The
mechanics is clumsy, and the brake force is applied too
rigorously. This is also due to inaccurate sensing in the
bell and the absence of force feedback. The applied force
of the electric engine is inadequate. So, we are currently
working on a second prototype, that will incorporate several

improvements to enhance the reaction time guarantees and
to amplify rider convenience:

• a hydraulic disc brake with a more direct apparatus to
apply and adjust the brake force, combined with an
anti-lock braking system (ABS).

• a force sensor in the brake handle with a force feedback
system.

VI. CONCLUSION

This paper has discussed the design, modelling, verifica-
tion, simulation, construction, and deployment of a proto-
typical bike with wireless brakes. For the safety of the rider,
we determine that is imperative that the brake shoe reacts
within no more than 250 ms to a command issued by the
brake handle. For the current prototype, the delay by the
mechanical and conversion components is about 100 ms,
which leaves some 150 ms for a successful communication
between the wireless partners. Measurements show that an
unfortunate configuration in DSA mode can lead to message
loss probabilities around 50%. According to our model
checking results, this implies that a bare communication
delay of 150 ms cannot be guaranteed in 1 out of 50 brake
attempts. Using a replicator network to add redundancy
to the communication is revealed to be counterproductive
by the model checker, and by experiments, if one takes
the increased round timing into account. This insight is
non-obvious, and is obtained by state-of-the-art PTA model
checking and simulation and later confirmed with several
experiments. We suppose it is of general interest to designers
of wireless dependable systems to be able to study whether
simple replication mechanisms can improve the safety guar-
antees.

Finally, the key to arrive at a safe design is to drastically
reduce the individual message loss probabilities. For the
MyriaNed system, this is achieved – maybe not surprising –
by avoiding randomness is slot assignment, using the fixed
slot allocation scheme FSA. The model checker enables us to
readily prove that this twist results in a design with very high
reliability guarantees, far beyond the “five-nines” yardstick
99.999%. In a nutshell, our model checking studies clearly
hint at the potential tradeoffs when designing such systems.

ACKNOWLEDGEMENTS

We are grateful to Bert Bost, Frits van der Wateren,
and Marcel Verhoef (Chess) for inspiring discussions and
continuous support with the MyriaNed configuration. Arnd
Hartmanns and Jonathan Bogdoll (Saarland University) have
clarified subtleties of the Modest languages, and have sup-
ported the development of the models via their tool set.

This research is supported by the Seventh Research
Framework Programme of the European Commission as
part of the “Quasimodo” project, grant agreement number
214755, and by the German Research Council (DFG) as part

of the Transregional Collaborative Research Center SFB/TR
14 AVACS.

REFERENCES

[1] H. Bohnenkamp, P. D’Argenio, H. Hermanns, JP. Katoen.
MODEST: A Compositional Modeling Formalism for Hard
and Softly Timed Systems. InIEEE Transactions on Software
Engineering, volume 32(10), pages:812-830, 2006.

[2] A. Hartmanns, H. Hermanns. A Modest Approach to Check-
ing Probabilistic Timed Automata. InProceedings of the
6th International Conference on the Quantitative Evaluation
of Systems, QEST 2009, pages: 187-196, IEEE Computer
Society Press, September 2009.

[3] F. Heidarian, J. Schmaltz and F.W. Vaandrager. Analysis
of a Clock Synchronization Protocol for Wireless Sensor
Networks. In A. Cavalcanti and D. Dams, editors,Proceed-
ings FM 2009: Formal Methods, volume 5850 of Lecture
Notes in Computer Science, pages: 516-531, Springer-Verlag,
November 2009.

[4] Highway Addressable Remote Transducer (HART) Protocol.
http://www.hartcomm.org/ – accessed on Apr 28, 2011.

[5] S. Juneja, P. Shahabuddin. Rare-event simulation techniques:
An introduction and recent advances. InHandbook of
Simulation,volume 13 of Handbooks in Operations Research
and Management Science, pages: 291-350, 2006.

[6] M. Kwiatkowska, G. Norman and D. Parker. PRISM: Prob-
abilistic Model Checking for Performance and Reliability
Analysis. In ACM SIGMETRICS Performance Evaluation
Review, pages: 40-45, March 2009

[7] M. Kwiatkowska, G. Norman and D. Parker. Stochastic
Games for Verification of Probabilistic Timed Automata. In
Proceedings of the 7th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’09),
volume 5813 of Lecture Notes in Computer Science, pages:
212-227, Springer-Verlag, September 2009.

[8] E.A. Lee Embedded Software. In M. Zelkowitz, editor,
Advances in Computers, vol. 56, Academic Press, 2002.

[9] MyriaNed R©: large wireless sensor and control network. http:
//wsn.chess.nl/ – accessed on Apr 28, 2011.

[10] Modest Toolset. http://www.modestchecker.net/ – accessed
on Apr 28, 2011.

[11] M. Schuts, F. Zhu, F. Heidarian and F.W. Vaandrager. Mod-
elling Clock Synchronization in the Chess gMAC WSN Pro-
tocol. InProceedings of the Workshop on Quantitative Formal
Methods: Theory and Applications, QFM 2009.Electronic
Proceedings in Theoretical Computer Science 13, pages: 41-
54, November 2009.

[12] Special issue on embedded systems.IEEE Computer Science,
volume 33, 2000.

[13] UPPAAL PRO - Uppaal for Probabilistic Timed Automata.
http://www.cs.aau.dk/∼arild/uppaal-probabilistic/ – accessed
on Apr 28, 2011.

